可以赌博网址-澳门注册网址大全-首页

2014年04183概率论与数据统计(经管类)复习资料-第二章 随机变量及其概率分布2

山西自考网 发布时间:2014年11月23日
.连续型随机变量
    1.定义  如果随机变量X的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=,-∞< x <∞,则称X为连续型随机变量,其中f (x)称为X的概率密度(函数).
 
    2.概率密度的性质
(1)非负性  f(x)≥0 ;                   (2)归一性  =1 ;
(3) P{x 1<X≤x 2}= ;          (4)若f (x)在点x处连续,则f (x)=F/ (x) .
注意:连续型随机变量X取任一指定实数值a的概率为零,即P{X= a}=0 .
    3.三种重要的连续型随机变量的分布
(1)X~U (a,b) 区间(a,b)上的均匀分布     .
(2)X服从参数为q的指数分布.
    (q>0).
(3)X~N (m,s2 )参数为m,s的正态分布  -¥<x<¥,  s>0.
特别, m=0, s2 =1时,称X服从标准正态分布,记为X~N (0,1),其概率密度
 , 标准正态分布函数  , F(-x)=1-Φ(x) .
若X~N ((m,s2), 则Z=~N (0,1),  P{x1<X≤x2}=Φ()-Φ().
若P{Z>z a}= P{Z<-z a}= P{|Z|>z a/2}= a,则点z a,-z a, ±z a/ 2分别称为标准正态分布的上,下,双侧a分位点.  注意:F(z a)=1-a , z 1- a= -z a.
.随机变量X的函数Y= g (X)的分布
    1.离散型随机变量的函数
  X 1    x2   …  x k   …
k 1    p2   …  p k   …
Y=g(X) g(x1)  g(x2) … g(x k)  …
若g(x k) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.
若g(x k) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.
    2.连续型随机变量的函数
若X的概率密度为fX(x),则求其函数Y=g(X)的概率密度fY(y)常用两种方法:
(1)分布函数法  先求Y的分布函数FY(y)=P{Y≤y}=P{g(X)≤y}=
其中Δk(y)是与g(X)≤y对应的X的可能值x所在的区间(可能不只一个),然后对y求导即得fY(y)=FY /(y) .
(2)公式法  若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为     
其中h(y)是g(x)的反函数 , a= min (g (-¥),g (¥))  b= max (g (-¥),g (¥)) .
如果f (x)在有限区间[a,b]以外等于零,则 a= min (g (a),g (b))  b= max (g (a),g (b)) .

可以赌博网址|澳门注册网址大全

XML 地图 | Sitemap 地图