可以赌博网址-澳门注册网址大全-首页

山西自考会计专业概率论与数理统计复习资料9

山西自考网 发布时间:2012年06月05日

下面内容公式和符号显示不全,请下载原版word文档 

    [点击下载该文件:第九章 回归分析.doc]

 

第九章 回归分析

内容先容
  本章在六、七、八章的基础上,对相关关系中随机变量与非随机变量之间的一种关系――回归关系进行分析,建立回归方程,并加以检验.

  内容讲解
  
  引言
  在现实世界中,不少变量之间是存在着一定的关系的,一般说来,这种关系大体上可分为两类,一类是确定性的,即函数关系。例如,电路中的电压V,电流I,电阻R三者间有关系 。另一类是非确定性的,这类变量之间虽有一定的关系却又并不完全确定,例如,人的血压与年龄有关,炼钢过程中含碳量与精炼的时间有关,农作物产量与施肥量和单位面积的播种量有关……这些变量之间虽有一定联系,但又不能完全确定的。事实上,这些变量是随机变量或至少其中一个是随机变量。这种非确定性的关系称为相关关系。
  例如:农作物产量和施肥量和单位面积的播种量的关系。
 
 
  
§9.1 回归直线方程的建立

  1.引例
  【例9-1】某种合金的抗拉强度y(kg/mm2)与其中的含碳量x(%)有关。现测12对数据如表9-1所示。
  表9-1
x 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.20 0.21 0.23
y 42.0 43.5 45.0 45.5 45.0 47.5 49.0 53.0 50.0 55.0 55.0 60.0
  【答疑编号12090101】
 
  
 
 
 
  小结:(1)x为可控制量,即非随机变量,y为随机变量;(2)对直线的要求:设 ,则ε~N(0,1);(3)得数学模型:y=β0+β1x+ε.
 
 
  2.一元回归分析问题的一般情况
  (1)一元线性回归的数学模型:将x取一组不同数值x1,x2,…,xn,通过试验取得相应的Y的值y1,y2,…,yn,从而得 对观察值(xi,yi),i=1,2,…,n.对于yi的值,可分为两部分:一部分是由线性函数β0 +β1x取得,另一部分是由随机因素的影响所造成的,记为εi.因此,xi与yi的关系可表示为yi=β0+β1x+εi,i=1,2,…,n,
  其中,εi~N(0,σ2)且各εi相互独立.这就是一元线性回归的数学模型.
 
  (2)几个待解决的问题:
  ① 未知参数β0,β1及σ2的点估计:设 , 为β0,β1的点估计, 为E(Y)的估计,则对上述模型求均值得
   ,
  这就是Y与x之间的线性关系经验公式.大家称此式为Y关于x的一元线性回归方程,称此方程的直线为回归直线,称 为回归系数,称 为回归常数,它是回归直线的截距.
 
  ② 回归方程的显著性检验:在实际问题中,Y与x之间是否存在关系Y=β0+β1x+ε是要经过检验才有意义.③ 经过检验有意义的回归方程可以用来预测和控制.
 
  (3)求未知参数β0,β1及σ2的点估计
  对于一切xi,为了使yi与 的偏差最小,采用最小二乘法对β0,β1估计.具体方法如下:
  ① 对已知样本观察值(xi,yi) ,i=1,2,…,n,构造β0,β1的函数
  Q(β0,β1)= .
 
  ② 利用偏导数求非负函数Q(β0,β1)的极值:求偏导数并令其为零
  
 
 
  称此方程组为正规方程组.
  解此方程组得
  
 
  其中, , .若引进记号
   ,
   ,
   ,
 
 
  则有
  
 
  容易验证,β0,β1的最小二乘估计 , 有如下性质:
  (i) , ;
 
  (ii) , .由此结果知
   ,
   .
 
  下面续例9-1,计算回归方程,看P187页表9-2。
 
   , ,n=12。
   , ,
   , ,
 
 

§9.2 回归方程的显著性检验

  本节回答上节提出的第二个问题.先容两种检验方法.
  1.F检验法
  (1)目的:检验y与x是否存在显著的线性关系
  (2)如果y与x之间不存在线性关系,则β1=0,反之,β1≠0.所以,检验假设为
  H0:β1=0,H1:β1≠0.
 
  (3)寻求检验统计量
 
  ① 平方和分解式
  按照上节所设,yi随x的取值不同而波动,其原因有二:一是E(Y)随x取值不同以线性关系变化;二是受随机因素影响,产生不规则变化.如果前一种影响是主要的,则β10,方程有意义,否则方程没有意义。为此,必须把两种影响放开,所以,选择一个“不动点” 作为标准,得到一个新的“量”,记为
   ,
  称其为总偏差平方和.而
  
  
  
 
 
 
  利用正规方程组的结果,得到
   ,
  其中
   
  反映了由于x的变化引起的波动大小,称为回归平方和;
  而
  
  反映了观察值与回归直线之间的偏离程度,即随机因素的影响,称为剩余平方和.而
  
  称为平方和分解式.
  ② 平方和的性质
 
  在假定各εi相互独立,且εi~N(0,σ2)的条件下,可以证明:
  (i) ;
  (ii)在H0为真时, ;
  (iii) 与 相互独立.
  ③ 得到统计量:于是,由第六章推论6-2(P141)可得,当H0为真时,
  
 
  ④ 统计量的意义:若回归方程有意义,则应该 尽可能大, 尽可能小,即此统计量的数值应该大;反之,应该小.此时,只要给定显著水平α,可以查F分布表求得临界值Fα(1,n-2),得到拒绝域W=[ Fα(1,n-2),+∞).当观察值F∈W时,拒绝H0,认为Y与x的线性关系是显著的;否则,结论相反.这种方法称为回归方程显著性检验的F检验法.
 
  由上述的平方和的性质可知, 为σ2的无偏估计,且 与 相互独立,所以,对回归方程的F检验可以用方差分析表来进行.
 
  表9-3
来源 平方和 自由度   均方 F比 显著性
回归

剩余

总和 

 

 
1

n-2

n-1 

 
 
 F∈W时,拒绝H0;否则接受H0
  【例9-2】对例9-1进行回归方程的显著性试验,α=0.01。
  【答疑编号12090201】
  解:列出方差分析表见表9-4。
  表9-4
来源 平方和 自由度 均方 F比 显著性
回归
剩余
总和 s回=317.2589
s剩=17.9703
sT=335.2292 1
10
11 317.2589
1.7970 176.55   
  用F=176.55>10.0=F0.01(1,10),故回归方程在α=0.01水平上是显著的。
 
  2.t检验法
 
  设检验假设
  H0:β1=0,H1:β1≠0.
  由 与 相互独立及t分布的定义知
  
  即
   .
 
 
 
 
  当假设H0:β1=0为真时,上式成立,其中, .于是,对给定的显著水平α,查t分布表得临界值 ,由t分布概率密度函数的对称性可得拒绝域 =(-∞,- )∪( ,+∞);
  用样本观察值计算统计量 的观察值,当t∈W时,拒绝H0,认为一元线性回归显著,否则,认为不显著.这种检验方法称为检验法.
 
  如果经过检验,认为线性回归不显著,应查明原因.一般地,大致有如下几种原因:
  ① 影响y的原因除x外,还有其他不可忽略的因素;
 
  ② y与x的关系不是线性的,而是其他非线性关系;
 
  ③ y与x无关.
  【例9-3】对例9-2用t检验回归方程的显著性,α=0.01.
  【答疑编号12090202】
 

  本章小结:

  一、内容
  

  二、试题选讲
  1.(425)某企业研发了一种新产品,选择了n个地区A1, A2,…, An进行独立试销。已知地区Ai投入的广告费为xi,获得的销售量为yi,i=1,2,…,n。研发人员发现(xi,yi)(i=1,2,…,n)满足一元线性回归模型
  
  则β1的最小二乘估计 =________________.
  【答疑编号12090203】
  答案:

可以赌博网址|澳门注册网址大全

XML 地图 | Sitemap 地图